Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solution deposition of micropatterned TiO2, ZrO2, SnO2, and In2O3 thin films through metal-loaded hydrogels

Identifieur interne : 000525 ( Main/Repository ); précédent : 000524; suivant : 000526

Solution deposition of micropatterned TiO2, ZrO2, SnO2, and In2O3 thin films through metal-loaded hydrogels

Auteurs : RBID : Pascal:13-0284981

Descripteurs français

English descriptors

Abstract

High-quality micropatterned SnO2, In2O3, ZrO2 and TiO2 thin films were prepared by a simple soft-lithographic process, based on the use of metal-loaded poly(ethylene glycol)-based hydrogels. The hydrogels liquid precursors have been embossed using polydimethylsiloxane molds, then rapidly photopolymerized and thermally degraded producing, despite the large volume contraction, crack-free and highly transparent ceramic patterns, with a thickness tunable between 40 nm and 1 μm. The films were characterized by a very fine nanostructure, presenting uniform, well-sintered and crystallized nanoparticles with a grain size in the range of 5-30 nm. The influence of both annealing temperature and heating rate on the thermal degradation of the precursor has been investigated: in the case of ZrO2 and TiO2, size-induced stabilization of tetragonal and anatase structures, respectively, was obtained and maintained also after annealing at temperatures up to 700 °C. The typical drawbacks associated to other soft-lithographic approaches (such as the limited thickness to avoid crack formation, the uncontrolled reactivity or the need for thermal solidification with the mold in place) were overcome, thanks to the intimate hybridization between the polymer and the inorganic salts, coupled with the improved reliable solidification achieved by the photopolymerization.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0284981

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Solution deposition of micropatterned TiO
<sub>2</sub>
, ZrO
<sub>2</sub>
, SnO
<sub>2</sub>
, and In
<sub>2</sub>
O
<sub>3</sub>
thin films through metal-loaded hydrogels</title>
<author>
<name sortKey="Tredici, Ilenia G" uniqKey="Tredici I">Ilenia G. Tredici</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University of Pavia, Viale Taramelli 12</s1>
<s2>27100 Pavia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maglia, Filippo" uniqKey="Maglia F">Filippo Maglia</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University of Pavia, Viale Taramelli 12</s1>
<s2>27100 Pavia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Resmini, Alessandro" uniqKey="Resmini A">Alessandro Resmini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University of Pavia, Viale Taramelli 12</s1>
<s2>27100 Pavia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anselmi Tamburini, Umberto" uniqKey="Anselmi Tamburini U">Umberto Anselmi-Tamburini</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, University of Pavia, Viale Taramelli 12</s1>
<s2>27100 Pavia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Italie</country>
<wicri:noRegion>27100 Pavia</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0284981</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0284981 INIST</idno>
<idno type="RBID">Pascal:13-0284981</idno>
<idno type="wicri:Area/Main/Corpus">000871</idno>
<idno type="wicri:Area/Main/Repository">000525</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anatase</term>
<term>Annealing temperature</term>
<term>Cracking</term>
<term>Dimethylsiloxane polymer</term>
<term>Ethylene oxide polymer</term>
<term>Grain size</term>
<term>Heat treatments</term>
<term>Hybridization</term>
<term>Hydrogel</term>
<term>Indium oxide</term>
<term>Lithography</term>
<term>Mechanical properties</term>
<term>Metallic thin films</term>
<term>Nanocrystal</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Photopolymerization</term>
<term>Polymers</term>
<term>Precursor</term>
<term>Sintering</term>
<term>Solidification</term>
<term>Tetragonal lattices</term>
<term>Thermal annealing</term>
<term>Thermal degradation</term>
<term>Thin films</term>
<term>Tin oxide</term>
<term>Titanium oxide</term>
<term>Transparent ceramics</term>
<term>Zirconium oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche mince</term>
<term>Couche mince métallique</term>
<term>Hydrogel</term>
<term>Précurseur</term>
<term>Siloxane(diméthyl) polymère</term>
<term>Céramique transparente</term>
<term>Nanostructure</term>
<term>Frittage</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Grosseur grain</term>
<term>Température recuit</term>
<term>Recuit thermique</term>
<term>Traitement thermique</term>
<term>Oxyde de titane</term>
<term>Oxyde de zirconium</term>
<term>Oxyde d'étain</term>
<term>Oxyde d'indium</term>
<term>Ethylène oxyde polymère</term>
<term>Dégradation thermique</term>
<term>Réseau quadratique</term>
<term>Anatase</term>
<term>Fissuration</term>
<term>Propriété mécanique</term>
<term>Solidification</term>
<term>Hybridation</term>
<term>Polymère</term>
<term>Polymérisation photochimique</term>
<term>Nanocristal</term>
<term>Lithographie</term>
<term>TiO2</term>
<term>ZrO2</term>
<term>SnO2</term>
<term>In2O3</term>
<term>CaSe</term>
<term>8107</term>
<term>6855J</term>
<term>6860B</term>
<term>4335N</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-quality micropatterned SnO
<sub>2</sub>
, In
<sub>2</sub>
O
<sub>3</sub>
, ZrO
<sub>2</sub>
and TiO
<sub>2</sub>
thin films were prepared by a simple soft-lithographic process, based on the use of metal-loaded poly(ethylene glycol)-based hydrogels. The hydrogels liquid precursors have been embossed using polydimethylsiloxane molds, then rapidly photopolymerized and thermally degraded producing, despite the large volume contraction, crack-free and highly transparent ceramic patterns, with a thickness tunable between 40 nm and 1 μm. The films were characterized by a very fine nanostructure, presenting uniform, well-sintered and crystallized nanoparticles with a grain size in the range of 5-30 nm. The influence of both annealing temperature and heating rate on the thermal degradation of the precursor has been investigated: in the case of ZrO
<sub>2</sub>
and TiO
<sub>2</sub>
, size-induced stabilization of tetragonal and anatase structures, respectively, was obtained and maintained also after annealing at temperatures up to 700 °C. The typical drawbacks associated to other soft-lithographic approaches (such as the limited thickness to avoid crack formation, the uncontrolled reactivity or the need for thermal solidification with the mold in place) were overcome, thanks to the intimate hybridization between the polymer and the inorganic salts, coupled with the improved reliable solidification achieved by the photopolymerization.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>542</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Solution deposition of micropatterned TiO
<sub>2</sub>
, ZrO
<sub>2</sub>
, SnO
<sub>2</sub>
, and In
<sub>2</sub>
O
<sub>3</sub>
thin films through metal-loaded hydrogels</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TREDICI (Ilenia G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAGLIA (Filippo)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RESMINI (Alessandro)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ANSELMI-TAMBURINI (Umberto)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, University of Pavia, Viale Taramelli 12</s1>
<s2>27100 Pavia</s2>
<s3>ITA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>52-59</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000501509380090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>34 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0284981</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High-quality micropatterned SnO
<sub>2</sub>
, In
<sub>2</sub>
O
<sub>3</sub>
, ZrO
<sub>2</sub>
and TiO
<sub>2</sub>
thin films were prepared by a simple soft-lithographic process, based on the use of metal-loaded poly(ethylene glycol)-based hydrogels. The hydrogels liquid precursors have been embossed using polydimethylsiloxane molds, then rapidly photopolymerized and thermally degraded producing, despite the large volume contraction, crack-free and highly transparent ceramic patterns, with a thickness tunable between 40 nm and 1 μm. The films were characterized by a very fine nanostructure, presenting uniform, well-sintered and crystallized nanoparticles with a grain size in the range of 5-30 nm. The influence of both annealing temperature and heating rate on the thermal degradation of the precursor has been investigated: in the case of ZrO
<sub>2</sub>
and TiO
<sub>2</sub>
, size-induced stabilization of tetragonal and anatase structures, respectively, was obtained and maintained also after annealing at temperatures up to 700 °C. The typical drawbacks associated to other soft-lithographic approaches (such as the limited thickness to avoid crack formation, the uncontrolled reactivity or the need for thermal solidification with the mold in place) were overcome, thanks to the intimate hybridization between the polymer and the inorganic salts, coupled with the improved reliable solidification achieved by the photopolymerization.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H60B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince métallique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Metallic thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hydrogel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hydrogel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Hidrogel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Siloxane(diméthyl) polymère</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Dimethylsiloxane polymer</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Siloxano(dimetil) polímero</s0>
<s2>NK</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Céramique transparente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Transparent ceramics</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Cerámica transparente</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Frittage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Sintering</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde de zirconium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Zirconium oxide</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Zirconio óxido</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Ethylène oxyde polymère</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Ethylene oxide polymer</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Etileno óxido polímero</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Dégradation thermique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Thermal degradation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Réseau quadratique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Tetragonal lattices</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Anatase</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Anatase</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Anatasa</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Fissuration</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Cracking</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Solidification</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Solidification</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Hybridation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Hybridization</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Polymère</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Polymers</s0>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Polymérisation photochimique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Photopolymerization</s0>
<s5>37</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>38</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>38</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Lithographie</s0>
<s5>39</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Lithography</s0>
<s5>39</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>ZrO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>In2O3</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>CaSe</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="37" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="38" i2="3" l="FRE">
<s0>6860B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="39" i2="3" l="FRE">
<s0>4335N</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000525 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000525 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0284981
   |texte=   Solution deposition of micropatterned TiO2, ZrO2, SnO2, and In2O3 thin films through metal-loaded hydrogels
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024